Ophthalmic Pathology Curriculum Standard

August 2012; latest revision October 2016

This standard has been prepared by the Royal Australian and New Zealand College of Ophthalmologists (RANZCO) and is copyright.

Please acknowledge authorship when using or quoting from material contained in this document.

Except as permitted under applicable legislation, no part of this document may be adapted, modified or reproduced by any process (electronic or otherwise) without the specific written permission of the copyright owner. Permission may be refused at the copyright owner’s absolute discretion.
Table of Contents

Purpose... 1
Structure .. 1
References .. 2
Teaching and Learning .. 3
Assessment ... 4
Learning outcomes and performance criteria .. 5
 SECTION 1: GENERAL OPHTHALMIC PATHOLOGY ... 5
 SECTION 2: MICROBIOLOGY ... 6
 SECTION 3: GENETICS .. 7
 SECTION 4: CLINICAL OPHTHALMIC PATHOLOGY ... 8
Curriculum Areas .. 9
Acknowledgements ... 13
Purpose

The purpose of the ophthalmic pathology standard is to provide an overview of the essential knowledge and skills in pathology required of an ophthalmologist to perform their work effectively.

It is essential that the ophthalmologist:
- appreciates the role of pathology in understanding disease mechanisms and investigating and treating patients with ocular diseases
- has a good understanding of microbiology and virology, and how microorganisms can cause ophthalmic disease
- demonstrates adequate knowledge and understanding of genetics relevant to ophthalmology, recognise genetic diseases, their patterns of inheritance and how this information can be applied to clinical care
- understands the importance of a knowledge of genetics for diagnosis, prognosis and genetic counselling of patients and their families
- applies the correct procedures to laboratory investigations and interpretation of tests in terms of the underlying pathology, as well as an understanding of the sensitivity, specificity and limitations of certain investigations
- has sufficient knowledge of pathology to understand and follow a clinicopathological publication and/or presentation.

Structure

This standard comprises four educational elements and their associated learning outcomes and performance criteria.

1: *General Ophthalmic Pathology*

- Comprises six learning outcomes and their associated performance criteria
- The learning outcomes and performance criteria focus on the following, as relevant to the eye, orbit and adnexae:
 - tissue damage
 - acute and chronic inflammation
 - basic immunological disease processes
 - wound healing
 - vascular disorders
 - principles of neoplasia.

2: *Microbiology*

- Comprises five learning outcomes and their associated performance criteria
- The learning outcomes and performance criteria focus on:
 - the nature and role of normal microbial flora in the eye, adnexa and upper respiratory tract
 - the physical and physiological defences of the body against infection
 - techniques in ocular microbiological diagnosis
 - understanding the basics of microorganism culture and identification
 - interpreting the results of microbiological tests.
3: Genetics

- Comprises one main learning outcome and its associated performance criteria, which focus on the principles of molecular biology techniques used in the detection of genetic abnormalities.

4: Clinical Ophthalmic Pathology

- Comprises ten learning outcomes and their associated performance criteria, which focus on:
 - the basis of a disease with its clinical presentation
 - the incidence, aetiology, pathogenesis and genetics of a disease (where applicable)
 - the natural history of a disease
 - differential diagnosis
 - specimen preparation
 - laboratory procedures pertaining to ophthalmology specimens
 - the examination of ocular histologic sections
 - interpretation of laboratory reports
 - the pathological effects of treatment, including complications.

- Each learning outcome and performance criterion in section 4 applies to each of the curriculum areas.

- The curriculum areas for this section are drawn from the core reading. They focus on the key areas of the eyelid and lacrimal drainage system, conjunctiva, cornea, orbit and optic nerve, embryological development of the eye, glaucoma, inflammation, wound healing and trauma, retina – vascular diseases, degeneration and dystrophies, intraocular tumours, pathology of medical and surgical treatment, lens, ophthalmic manifestations of systemic diseases and laboratory investigations.

References

1: General Ophthalmic Pathology

Core Reading

- American Academy of Ophthalmology, Basic and Clinical Science Course (AAO BCSC), Section 4: Ophthalmic Pathology and Intraocular Tumors

Additional Reading

It is recommended that reading also be supplemented with appropriate articles from current and relevant peer-reviewed journals.
2: Microbiology

Core Reading

- American Academy of Ophthalmology, Basic and Clinical Science Course (AAO BCSC):
 - Section 1: Update on General Medicine (Infectious Disease)
 - Section 8: External Disease and Cornea (Infectious Diseases of the External Eye and Cornea)

Additional Reading

3: Genetics

Core Reading

- American Academy of Ophthalmology, Basic and Clinical Science Course (AAO BCSC), Section 2: Fundamentals and Principles of Ophthalmology (Genetics)

4: Clinical Ophthalmic Pathology

Core Reading

- American Academy of Ophthalmology, Basic and Clinical Science Course (AAO BCSC), Section 4: Ophthalmic Pathology and Intraocular Tumors.

- Relevant journal articles on ocular pathology from the RANZCO Clinical and Experimental Ophthalmology for the past twelve months

Additional Reading

It is recommended that reading also be supplemented with appropriate articles from current and relevant peer-reviewed journals.

Teaching and Learning
The College recommends that trainees undertake the following teaching and learning activities to assist them in achieving the learning outcomes and performance criteria outlined in this curriculum standard:

- Familiarise yourself thoroughly with this standard. It outlines all the examinable material on which the questions in the Ophthalmic Pathology examination will be based.
- Thoroughly study the core readings as outlined in this curriculum standard, and where possible, consolidate your learning by familiarising yourself with the additional reading.
- Arrange to visit the practice of a histopathologist who reports on eye pathology. During this visit, focus in particular on developing skills to interpret ophthalmic pathology reports, and observing the dissection and processing of a globe. Preferably this will be the globe of a patient that you have seen during their enucleation procedure. In addition, arrange to be present during a frozen section performed on an ophthalmic specimen.
- Practise using a microscope to observe ophthalmic pathology slides. (Please note that the College uses digital images rather than a viva microscope examination to assess each trainee’s ability to recognise pathologies of the eye. Nevertheless, the ability to use a microscope proficiently remains a core skill which a trainee is expected to learn).
- View the ophthalmic pathology images available on the College learning management system, Moodle, as a guide to the types of images that you may encounter in the Ophthalmic Pathology examination.

It will be important for you to practise manipulating these slides to see the images at different magnifications and navigate from one slide to the next.

- Attend an ophthalmic pathology course organised by the College, and/or in your training network and/or other relevant organisations.
- Keep a log of ocular pathologies you encounter in clinics, surgery and/or on any visit to a histopathologist.
- Join a study group to help you prepare for the Ophthalmic Pathology examination. A useful task to do as part of a study group is to revise from previous examinations. Previous examination papers can be downloaded from Moodle.

Assessment

Ophthalmic Pathology Examination (3 hours)
- *Short Answer Questions (SAQs) – General Ophthalmic Pathology*
- *Multiple Choice Questions (MCQs) – Microbiology and Genetics*
- *Short Essay Questions (SEQs) – Clinical Ophthalmic Pathology*

Computer-assisted Examination of Ocular Histologic Sections (45 minutes)

The RANZCO Advanced Clinical Exam (RACE) may include elements of this curriculum standard.
Learning outcomes and performance criteria

SECTION 1: GENERAL OPHTHALMIC PATHOLOGY

<table>
<thead>
<tr>
<th>LEARNING OUTCOMES</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
</table>
| **1.1** Know the mechanisms of tissue damage and degeneration relevant to the eye, orbit and adnexae | Explain the pathological processes of:
- Cellular ageing
- Hyaline change
- Calcification
- Metaplasia
- Dysplasia
- Apoptosis
- Necrosis
- Ischaemic cell injury |
| **1.2** Know about acute and chronic inflammation relevant to the eye, orbit and adnexae | Describe:
- Allergic types 1–5
- Cellular and vascular mechanisms of acute and chronic non granulomatous inflammation
- Cellular mechanisms of chronic granulomatous inflammations |
| **1.3** Understand basic immunological disease processes relevant to the eye, orbit and adnexae | Describe:
- Mechanisms of transplant rejection
- The humoral and cellular mechanisms of the immune response |
| **1.4** Understand wound healing relevant to the eye, orbit and adnexae | Describe:
- How wound healing occurs
- The process of scar formation |
| **1.5** Understand vascular disorders relevant to the eye, orbit and adnexae | Describe:
- Process of thrombosis
- Process of new vessel formation
- The pathogenesis of atherosclerosis |
| **1.6** Understand the principles of neoplasia relevant to the eye, orbit and adnexae | Describe:
- The characteristics of benign and malignant neoplasms
- How tumours spread |
SECTION 2: MICROBIOLOGY

<table>
<thead>
<tr>
<th>LEARNING OUTCOMES</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
</table>
| **2.1** Describe and explain the nature and the role of the normal microbial flora in the eye, adnexa and upper respiratory tract | Describe:
- The role of the resident flora in health and disease
- Normal flora of the conjunctiva, eyelashes and eye lids
- Normal flora of the mouth and upper respiratory tract |
| **2.2** Describe the physical and physiological defences of the body against infection | Discuss the defence mechanism(s) of:
- Lids
- Blinking
- Tears
- Conjunctiva
- Discuss innate immunity
- Discuss acquired immunity |
| **2.3** Describe the techniques in ocular microbiological diagnosis | Discuss each of the following:
- Methods of specimen collection
- Methods of specimen transport
- Issues in specimen contamination
- Issues in laboratory diagnostic criteria; normal flora or infection |
| **2.4** Describe the basics of microorganism culture and identification | Discuss:
- Microbiological stains and their interpretation
- Basic culture media and uses
- Effect of temperature and atmosphere requirements
- Susceptibility testing; general principles and interpretation
- Non-culture methods of identification of organisms including molecular techniques
- Infectious disease serology |
| **2.5** Interpret the results of microbiological tests | Demonstrate the ability to interpret lab reports |
LEARNING OUTCOMES

3.1 Describe and apply the principles of molecular biology techniques used in the detection and diagnosis of genetic abnormalities

PERFORMANCE CRITERIA

Discuss each of the following:
- Obtaining DNA from patients
- Polymerase chain reaction
- DNA sequencing (Sanger and Next Generation)
- DNA polymorphism analysis, SSCP, dHPLC
- Gene linkage analysis, blood groups / enzymes, RFLPs, VNTRs, SNPs
- LOD score
- Genetic association studies SNPs
- Genome Wide Association Studies (GWAS)
- Cytogenetics:
 - Trisomy
 - Monosomy
 - Deletion
 - Inversion
 - Duplication
 - Translocation
 - Fluorescent in situ hybridisation (FISH)
 - Prenatal diagnosis
- Clinical genetics including inheritance, diagnosis and genetic counselling
SECTION 4: CLINICAL OPHTHALMIC PATHOLOGY

<table>
<thead>
<tr>
<th>LEARNING OUTCOMES</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Correlate the basis of a disease with its clinical presentation</td>
<td>• Describe the macroscopic, histopathologic and (where appropriate) the ultrastructural morphology of a disease</td>
</tr>
</tbody>
</table>
| 4.2 Know (where applicable) the incidence, aetiology, pathogenesis and genetics of a given disease | • Compare and contrast accepted, recent theories of aetiology and pathogenesis
• Describe the incidence of disease in varying populations encountered in clinical practice
• Identify risk factors for the development of disease |
| 4.3 Know the natural history of a disease | • Describe the natural history of a disease |
| 4.4 Evaluate the different diseases included in the differential diagnosis | • Formulate an appropriate differential diagnosis of a disease presentation |
| 4.5 Know the procedures for the preparation of specimens for the laboratory | • Describe the procedures for the preparation of specimens |
| 4.6 Know laboratory procedures that pertain to ophthalmology specimens | • Describe the laboratory procedures
• Communicate effectively with the pathologist |
| 4.7 Examine ocular histologic sections | • Identify anatomical structures of normal tissue
• Describe pathology including any prognostic features if relevant
• Describe clinical manifestations of pathology
• Formulate an appropriate differential diagnosis of a disease presentation
• Determine appropriate tests, special stains or investigations required to establish diagnosis |
| 4.8 Understand laboratory reports | • Interpret laboratory reports
• Explain the aims, limitations, specificities and sensitivities of specified pathological investigations in a manner that can be understood |
| 4.9 Know how treatment can alter the pathology of a disease | • Describe how treatment can alter the pathology of a disease |
| 4.10 Know the pathological effects and complications of treatment | • Describe the pathological sequelae of treatment for a disease |
Curriculum Areas

EYELID AND LACRIMAL DRAINAGE SYSTEM

Eyelid
- Infective
- Inflammatory
- Tumours
 - Benign
 - Pre-malignant
 - Malignant
- Soft tissue tumours
- Manifestations of systemic disease

Lacrimal drainage system
- Infections
- Tumours

Conjunctiva
- Non-specific chronic conjunctivitis
- Specific inflammatory conditions
 - Allergic eye disease
 - Autoimmune
 - Granulomatous conjunctivitis
 - Infective
- Degenerative
- Tumours
 - Benign
 - Pre-malignant
 - Malignant
 - Lymphoproliferative disease

CORNEA
- Ulcerative keratitis
- Degenerations
- Dystrophies
- Keractasia
- Malformations
- Trauma
- Treatment related pathology

ORBIT & OPTIC NERVE

Orbital tissue pathology
- Inflammatory
- Tumours
 - Cysts
 - Neoplasias including hamartomas, teratomas and choristomas
 - Lymphoid tumours
- Lacrimal gland
 - Inflammatory diseases
 - Neoplasias
 - Metastases
Optic Nerve Pathology
Optic disc swelling / optic atrophy
Primary optic nerve tumours
Optic nerve hypoplasia

EMBRYOLOGICAL DEVELOPMENT OF THE EYE
Anterior segment anomalies
Posterior segment anomalies
Whole eye anomalies
The phakomatoses
The ocular effects of chromosomal abnormalities
Congenital infections
Drug embryopathy

GLAUCOMA
Congenital / infantile / juvenile
Open angle
Primary
Secondary
Angle closure
Primary
Secondary
Pathology of glaucoma treatment and complications

INFLAMMATION
Endophthalmitis / panophthalmitis
Pyogenic Reactions
Granulomatous Reactions
Chorioretinitis
Non-granulomatous uveitis

WOUND HEALING & TRAUMA
Healing and repair in ocular, orbital and periocular tissues
Modulation of wound healing
Trauma
The shrunken eye (atrophia / phthisis bulbi)

RETINA – VASCULAR DISEASES, DEGENERATIONS AND DYSTROPHIES
Vascular disease
Dystrophies
Degenerations
Central
Peripheral degenerations
Pathology of retinal detachment and surgery
INTRAOCULAR TUMOURS
Iris
Ciliary body
Choroid
Retina
Panophthalmic neoplasia

PATHOLOGY OF MEDICAL AND SURGICAL TREATMENT
Ocular
Orbital
Adnexal

LENS
Cataract
Developmental anomalies
Phaco anaphylactic glaucoma
Phacolytic glaucoma
Pseudophakia

OPHTHALMIC MANIFESTATIONS OF SYSTEMIC DISEASES
Inflammatory: infectious and non-infectious
Neoplastic
Vascular
Immunodeficiency / immunosuppression
Metabolic
Genetic

LABORATORY INVESTIGATIONS
Routine formalin fixation, processing and slide presentation
Frozen section
Histochemical stains
 PAS (Periodic acid-Schiff)
 PASD (Periodic acid-Schiff Diastase)
 Congo red
 Alcian blue
 Masson trichrome
 Gram
 GMS (Gomori methenamine-silver nitrate)
 ZN (Ziehl-Neelson)
 EVG (elastin Van Gieson)
 Perls’ Prussian blue

Principles of immunohistochemistry
A summary of antibodies frequently used in immunohistochemistry
 Anti-actin / myoglobin
Desmin
Carcinoembryonic antigen (CEA)
CD1-79+
Cytokeratin / CAM 5.2 / AE1 / AE3
Epithelial membrane antigen (EMA)
Factor VIII-related antigen
Glial fibrillar acidic protein (GFAP)
HMB45/melan-A
S-100
Vimentin

Cytology
EM (electron microscopy)
FISH (fluorescence in situ hybridization)
CISH (chromogenic in situ hybridization)
PCR (polymerase chain reaction)
Flow cytometry
Cytogenetics
Serology
Culture of microorganisms
Acknowledgements

The College acknowledges the individuals listed (in alphabetical order) below for participating in the drafting of this curriculum standard.

Fellows and Trainees:
 Vivek Chowdhury
 Max Conway
 Tom Dodd
 Mark Elder
 Michael Giblin
 Catherine Green
 Anthony Hall
 Diane Kenwright
 David Mackey
 Tasha Micheli
 Terrence Ong
 Mark Renehan
 Jon Ruddle
 Weng Sehu
 Laurence Sullivan
 Andrea Vincent

College staff:
 Antonelle Clemente-Marquez
 Sonja Cronjé
 Penny Gormly
 Christine McGuigan
 Eden Tay